|
The LAKE model webpage: https://mathmod.org/lake/
|
|
The LAKE model webpage: https://mathmod.org/lake/
|
|
|
|
|
|
LAKE is an extended one-dimensional model of thermodynamic, hydrodynamic and biogeochemical processes in the water basin and the bottom sediments (Stepanenko and Lykosov 2005, Stepanenko et al. 2011). The model simulates vertical heat transfer taking into account the penetration of short-wave radiation in water layers (Heiskanen et al., 2015), ice, snow and bottom sediments. The model allows for the evolution of ice layer at the bottom after complete lake freezing in winter. The equations of the model are formulated in terms of quantities averaged over the horizontal section a water body, which leads to an explicit account of the exchange of momentum, heat, and dissolved gases between water and the inclined bottom. In the water column, $`k-\epsilon`$ parametrization of turbulence is applied. The equations of motion take into account the barotropic (Stepanenko et al., 2016) and baroclinic pressure gradient (Степаненко, 2018). In ice and snow, a coupled transport of heat and liquid water is reproduced (Volodina et al. 2000; Stepanenko et al., 2019). In bottom sediments, water phase changes are simulated. The model also describes vertical diffusion of dissolved gases (CO$`_2`$, CH$`_4`$, O$`_2`$), as well as their bubble transfer, methane oxidation, photosynthesis and processes of oxygen consumption. Parameterization of methane production in sediments is included (Stepanenko et al. 2011), and for the case of thermokarst lakes, an original formulation for the methane production near the lower boundary of "talik" is implemented. Model was tested in respect to thermal and ice regime at a number reservoirs in contrasting climate conditions, specifically, within the LakeMIP project (Lake Model Intercomparison Project, Stepanenko et al., 2010; Stepanenko et al., 2013; Stepanenko et al., 2014; Thiery et al., 2014).
|
|
LAKE is an extended one-dimensional model of thermodynamic, hydrodynamic and biogeochemical processes in the water basin and the bottom sediments (Stepanenko and Lykosov 2005, Stepanenko et al. 2011). The model simulates vertical heat transfer taking into account the penetration of short-wave radiation in water layers (Heiskanen et al., 2015), ice, snow and bottom sediments. The model allows for the evolution of ice layer at the bottom after complete lake freezing in winter. The equations of the model are formulated in terms of quantities averaged over the horizontal section a water body, which leads to an explicit account of the exchange of momentum, heat, dissolved species and suspended matter between water and the inclined bottom. In the water column, $`k-\epsilon`$ parametrization of turbulence is applied, along with other options like Henderson-Sellers diffusivity and convective adaptation of predicted vertical distributions. The equations of motion take into account the barotropic (Stepanenko et al., 2016) and baroclinic pressure gradient (Степаненко, 2018; Stepanenko et al., 2020). In ice and snow, a coupled transport of heat and liquid water is reproduced (Volodina et al. 2000; Stepanenko et al., 2019). In bottom sediments, water phase changes are simulated. The water salinity effects include contributions to density, freezing point, the ice growth rate (Stepanenko et al., 2019). The water budget is explicitly simulated to reproduce lake level variations, as well as associated vertical motions in the water column (Степаненко и др., 2020). The model also describes vertical diffusion of dissolved gases (CO$`_2`$, CH$`_4`$, O$`_2`$), as well as their bubble transfer, methane oxidation, photosynthesis and processes of oxygen consumption in water column and sediments. The other biogeochemical species include particulate organic matter (both living and dead), chorophyll-a, dissolved organic carbon, dissolved inorganic phosphorus. Parameterization of methane production in sediments is included (Stepanenko et al. 2011), and for the case of thermokarst lakes, an original formulation for the methane production near the lower boundary of "talik" is implemented. Model has been tested in respect to thermal and ice regime at a number lakes in contrasting climate conditions, specifically, within the LakeMIP project (Lake Model Intercomparison Project, Stepanenko et al., 2010; Stepanenko et al., 2013; Stepanenko et al., 2014; Thiery et al., 2014). The modeled carbon dioxide and methane emissions has been reported for a number of natural and artificial reservoirs (Iakunin et al., 2020; Guseva et al., 2020; Stepanenko et al., 2011; Stepanenko et al., 2016; Степаненко и др., 2020).
|
|
|
|
|
|
The current **version** of the model is 3.0
|
|
The current **version** of the model is 3.0
|
|
|
|
|
... | @@ -24,6 +24,7 @@ Any **questions** regarding LAKE model please address to Victor Stepanenko (step |
... | @@ -24,6 +24,7 @@ Any **questions** regarding LAKE model please address to Victor Stepanenko (step |
|
* Iakunin, Maksim, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues (2020). Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western europe using the LAKE 2.0 model. *Geoscientific Model Development*, 13(8):3475–3488. http://dx.doi.org/10.5194/gmd-13-3475-2020
|
|
* Iakunin, Maksim, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues (2020). Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western europe using the LAKE 2.0 model. *Geoscientific Model Development*, 13(8):3475–3488. http://dx.doi.org/10.5194/gmd-13-3475-2020
|
|
* Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., … Nordbo, A. (2015). Effects of water clarity on lake stratification and lake-atmosphere heat exchange. *Journal of Geophysical Research*, 120(15). http://doi.org/10.1002/2014JD022938
|
|
* Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., … Nordbo, A. (2015). Effects of water clarity on lake stratification and lake-atmosphere heat exchange. *Journal of Geophysical Research*, 120(15). http://doi.org/10.1002/2014JD022938
|
|
* Gladskikh, D. S., V. M. Stepanenko, and E. V. Mortikov (2021). The effect of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer. *Water Resources*, 48(2):226–234. http://dx.doi.org/10.1134/S0097807821020068
|
|
* Gladskikh, D. S., V. M. Stepanenko, and E. V. Mortikov (2021). The effect of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer. *Water Resources*, 48(2):226–234. http://dx.doi.org/10.1134/S0097807821020068
|
|
|
|
* Golub, Malgorzata, Wim Thiery, Rafael Marcé, Don Pierson, ..., and Galina Zdorovennova (2022). A framework for ensemble modelling of climate change impacts on lakes worldwide: the isimip lake sector. Geoscientific Model Development, 15:4597–4623. http://dx.doi.org/10.5194/gmd-15-4597-2022
|
|
* Guseva, S., T. Bleninger, K. Jöhnk, B. A. Polli, Z. Tan, W. Thiery, Q. Zhuang, J. A. Rusak, H. Yao, A. Lorke, and V. Stepanenko (2020). Multimodel simulation of vertical gas transfer in a temperate lake. *Hydrology and Earth System Sciences*, 24:697–715, http://dx.doi.org/10.5194/hess-24-697-2020.
|
|
* Guseva, S., T. Bleninger, K. Jöhnk, B. A. Polli, Z. Tan, W. Thiery, Q. Zhuang, J. A. Rusak, H. Yao, A. Lorke, and V. Stepanenko (2020). Multimodel simulation of vertical gas transfer in a temperate lake. *Hydrology and Earth System Sciences*, 24:697–715, http://dx.doi.org/10.5194/hess-24-697-2020.
|
|
* Guseva, S., M. Aurela, A. Cortés, R. Kivi, E. Lotsari, S. MacIntyre, I. Mammarella, A. Ojala, V. Stepanenko, P. Uotila, A. Vähä, T. Vesala, M. B. Wallin, and A. Lorke (2021). Variable physical drivers of near-surface turbulence in a regulated river. *Water Resources Research*, 57(11):e2020WR027939. http://dx.doi.org/10.1029/2020wr027939
|
|
* Guseva, S., M. Aurela, A. Cortés, R. Kivi, E. Lotsari, S. MacIntyre, I. Mammarella, A. Ojala, V. Stepanenko, P. Uotila, A. Vähä, T. Vesala, M. B. Wallin, and A. Lorke (2021). Variable physical drivers of near-surface turbulence in a regulated river. *Water Resources Research*, 57(11):e2020WR027939. http://dx.doi.org/10.1029/2020wr027939
|
|
* Stepanenko, V. M., Machul’skaya, E. E., Glagolev, M. V., & Lykossov, V. N. (2011). Numerical modeling of methane emissions from lakes in the permafrost zone. *Izvestiya, Atmospheric and Oceanic Physics*, 47(2), 252–264. http://doi.org/10.1134/S0001433811020113
|
|
* Stepanenko, V. M., Machul’skaya, E. E., Glagolev, M. V., & Lykossov, V. N. (2011). Numerical modeling of methane emissions from lakes in the permafrost zone. *Izvestiya, Atmospheric and Oceanic Physics*, 47(2), 252–264. http://doi.org/10.1134/S0001433811020113
|
... | @@ -35,7 +36,7 @@ Any **questions** regarding LAKE model please address to Victor Stepanenko (step |
... | @@ -35,7 +36,7 @@ Any **questions** regarding LAKE model please address to Victor Stepanenko (step |
|
* Thiery, W., Stepanenko, V., Fang, X., Jöhnk, K., Li, Z., Martynov, A., … van Lipzig, N. (2014). LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. *Tellus, Series A: Dynamic Meteorology and Oceanography*, 66. http://doi.org/doi:10.3402/tellusa.v66.21390
|
|
* Thiery, W., Stepanenko, V., Fang, X., Jöhnk, K., Li, Z., Martynov, A., … van Lipzig, N. (2014). LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. *Tellus, Series A: Dynamic Meteorology and Oceanography*, 66. http://doi.org/doi:10.3402/tellusa.v66.21390
|
|
* Volodina, E., Bengtsson, L., & Lykosov, V. N. (2000). Parameterization of heat and moisture transfer in a snow cover for modelling of seasonal variations of land hydrological cycle. *Russian Meteorology and Hydrology*, (5), 5–14.
|
|
* Volodina, E., Bengtsson, L., & Lykosov, V. N. (2000). Parameterization of heat and moisture transfer in a snow cover for modelling of seasonal variations of land hydrological cycle. *Russian Meteorology and Hydrology*, (5), 5–14.
|
|
* Степаненко В.М. (2018) Параметризация сейш для одномерной модели водоёма. *Труды Московского физико-технического института*. том 10, № 1, с. 97-111.
|
|
* Степаненко В.М. (2018) Параметризация сейш для одномерной модели водоёма. *Труды Московского физико-технического института*. том 10, № 1, с. 97-111.
|
|
* В. М. Степаненко, М. Г. Гречушникова, И. А. Репина. Численное моделирование эмиссии метана из водохранилища. *Фундаментальная и прикладная климатология*, 2:76–99, 2020.http://dx.doi.org/10.21513/2410-8758-2020-2-76-99
|
|
* В. М. Степаненко, М. Г. Гречушникова, И. А. Репина. Численное моделирование эмиссии метана из водохранилища (2020). *Фундаментальная и прикладная климатология*, 2:76–99. http://dx.doi.org/10.21513/2410-8758-2020-2-76-99
|
|
|
|
|
|
<!-- **Acknowledgements**
|
|
<!-- **Acknowledgements**
|
|
|
|
|
... | | ... | |